Logarithms and Logarithmic Functions

These notes are intended as an introduction to the topic of logarithms. They include material from section 5.4 (p. 375 - 380) in your workbook. You should also read the section for more complete explanations and additional examples.

Logarithms

Use the table of values below to graph of $f(x) = 2^x$ and its inverse.

x	f(x)
-3	
-2	
-1	
0	
1	
2	
3	

The inverse of the exponential function $y = a^x$, written $x = a^y$, is called a **logarithmic function**. The exponent y is known as a **logarithm**.

Logarithmic functions are more commonly written in logarithmic form as

$$y = \log_a x \qquad \begin{cases} a > 0\\ a \neq 1\\ x > 0 \end{cases}$$

This is read as log base a of x. y is the logarithm, a is the base, and x is the argument.

Example 1 (sidebar p. 377)

a) Write each exponential expression as a logarithmic expression.

i)
$$3^3 = 27$$

ii)
$$5^{-2} = \frac{1}{25}$$

iii)
$$4^0 = 1$$

b) Write each logarithmic expression as an exponential expression.

i)
$$\log_7 49 = 2$$

ii)
$$\log_4\left(\frac{1}{64}\right) = -3$$

iii)
$$\log_{10}\left(\frac{1}{10000}\right) = -4$$

Common Logarithm

A logarithmic function with base 10, $y = \log_{10} x$, is called a **common logarithmic function**. Any logarithm written without a base (e.g. $y = \log x$) is assumed to be base 10.

On your calculator, use the LOG key to evaluate a logarithm with base 10.

Example (not in workbook) Evaluate $y = \log 100$.

If the argument is the unknown, you can use the 10^x key (2nd function, LOG) to determine the value of x.

Example (not in workbook) Determine the value of x in $\log x = 2$.

Natural Logarithm

A logarithmic function with base e, $y = \log_e x$, is called a **natural logarithmic function**. It is more commonly written as

 $y = \ln x$

On your calculator, use the LN key to evaluate a logarithm with base e. Use the e^x key (2nd function, LN) to solve for the argument.

Example (not in workbook)

Solve each of the following:

a) $y = \ln 5$

b) $\ln x = 12$

Homework: #5, 6, 8 in the exercises (p. 381 – 385). Answers on p. 386.